Distinct functional stoichiometry of potassium channel beta subunits.

نویسندگان

  • J Xu
  • W Yu
  • J M Wright
  • R W Raab
  • M Li
چکیده

Shaker-type potassium channels play important roles in determining the electrical excitability of cells. The native channel complex is thought to be formed by four pore-forming alpha subunits that provide four interaction sites for auxiliary modulatory Kvbeta subunits. Because Kvbeta subunits possess diverse modulatory activities including either up-regulation or down-regulation of potassium currents, differential assembly of the alpha-beta complex could give rise to diverse current properties. However, the detailed physical and functional stoichiometry of the alpha-beta complex remains unknown. Kvbeta1 subunits reduce potassium currents through inactivation, whereas Kvbeta2 subunits enhance potassium currents by inhibiting the Kvbeta1-mediated inactivation and at the same time by promoting the surface expression of certain potassium channels. In this report we show that Kvbeta1 and Kvbeta2 of the Shaker-type potassium channels display distinct functional stoichiometry to interact with the Kv1 alpha subunits, a subfamily of Shaker-type potassium channels. The interaction of Kvbeta1 subunits with alpha subunits is consistent with the alpha4betan model, where n equals 0, 1, 2, 3, or 4, depending upon the relative concentration of alpha and beta subunits. The alpha4betan stoichiometry allows for gradual changes of the Kvbeta1-mediated inactivation. In contrast, Kvbeta2 subunits self-associate to form oligomers and interact with the alpha subunits via alpha4beta4 stoichiometry, which permits effective multivalent associations with alpha subunits. Such distinct functional stoichiometry of Kvbeta1 and Kvbeta2 provides a molecular mechanism that is well suited to their contrasting activities of up-regulation or down-regulation of potassium currents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subunit Stoichiometry of Cyclic Nucleotide-Gated Channels and Effects of Subunit Order on Channel Function

Cyclic nucleotide-gated (CNG) ion channels are multimeric structures containing at least two subunits. However, the total number of subunits per functional channel is unknown. To determine the subunit stoichiometry of CNG ion channels, we have coexpressed the 30 pS conductance bovine retinal channel (RET) with an 85 pS conductance chimeric retinal channel containing the catfish olfactory channe...

متن کامل

Octameric Stoichiometry of the KATP Channel Complex

ATP-sensitive potassium (KATP) channels link cellular metabolism to electrical activity in nerve, muscle, and endocrine tissues. They are formed as a functional complex of two unrelated subunits-a member of the Kir inward rectifier potassium channel family, and a sulfonylurea receptor (SUR), a member of the ATP-binding cassette transporter family, which includes cystic fibrosis transmembrane co...

متن کامل

Fluorescence measurements reveal stoichiometry of K+ channels formed by modulatory and delayed rectifier alpha-subunits.

Modulatory alpha-subunits, which comprise one-fourth of all voltagegated K(+) channel (Kv) alpha-subunits, do not assemble into homomeric channels, but selectively associate with delayed rectifier Kv2 subunits to form heteromeric channels of unknown stoichiometry. Their distinct expression patterns and unique functional properties have made these channels candidate molecular correlates for a br...

متن کامل

Two classes of regulatory subunits coassemble in the same BK channel and independently regulate gating

High resolution proteomics increasingly reveals that most native ion channels are assembled in macromolecular complexes. However, whether different partners have additive or cooperative functional effects, or whether some combinations of proteins may preclude assembly of others are largely unexplored topics. The large conductance Ca(2+)-and-voltage activated potassium channel (BK) is well-suite...

متن کامل

Subunit composition determines Kv1 potassium channel surface expression.

Shaker-related or Kv1 voltage-gated K(+) channels play critical roles in regulating the excitability of mammalian neurons. Native Kv1 channel complexes are octamers of four integral membrane alpha subunits and four cytoplasmic beta subunits, such that a tremendous diversity of channel complexes can be assembled from the array of alpha and beta subunits expressed in the brain. However, biochemic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 4  شماره 

صفحات  -

تاریخ انتشار 1998